Come sovrastimare il flusso d’acqua posizionando uno strumento nel modo sbagliato

Stesura del Report in data: 17/04/2016

Questo Post prende spunto da una discussione in merito alle misure energetiche pubblicate in questo documento del Maggio 2013 (Provisional Patent Application US61/821,914) e da quanto sostenuto da un utente del Blog 22passi (nickname: Hermano Tobia), utente che in sostanza afferma di non credere affatto alla possibilità di errori pacchiani nella misura dell’acqua prelevata dal contenitore denominato “water reservoir” quando la si effettui utilizzando un “Flowmeter” come quello citato in detto documento. In particolare Hermano Tobia, facendo riferimento ad una immagine che molto probabilmente documentava visivamente il set-up adottato (immagine di seguito indicata come Figura 1), affermava:

Il tubo col flussimetro é collegato alla pompa autoadescante tellarini che é nel secchio blu dove é convogliata la condensa, e quindi non credo che la tua ipotesi sia plausibile.[10 aprile 2016 23:03]

Hermano Tobia si riferiva alla critica tecnica espressa in precedenza da Mario Massa, il quale aveva sottolineato come la scelta infelice adottata per il posizionamento del “Flowmeter” era tale da comportare potenzialmente un cattivo funzionamento dello strumento stesso. In particolare Mario Massa nel suo commento aveva fatto notare che:

… quel flussimetro a palette è montato in modo assolutamente non corretto: è nel punto più alto di un tubo che sfocia in un serbatoio.[10 aprile 2016 20:22]

cioè il “Flowmeter” (in particolare un Contalitri del tipo utilizzato normalmente nelle abitazioni per l’acqua potabile) era stato collocato in maniera errata se lo scopo era quello di rilevare correttamente il reale flusso di acqua transitante.

La Figura 1 mostra il set-up adottato per quel test e si può notare come il “water reservoir” (il contenitore blu) sia posizionato in basso rispetto allo strumento.

Figura 1 - Serbatoio munito di "Flussimetro" posizionato in alto

Figura 1 – Serbatoio munito di “Flussimetro” posizionato in alto

Per convincere chi eventualmente avesse dubbi sui notevoli problemi funzionali che possono manifestarsi quando non si determinino le condizioni per avere un completo e costante riempimento della condotta all’interno della quale è presente e fluisce l’acqua, è stato realizzato un nostro set-up di prova (Figura 3) analogo a quello in discussione. Utilizzando una pompa si andrà a prelevare acqua da un serbatoio, la quantità di acqua prelevata verrà misurata facendo uso inizialmente di un Watermeter della Gioanola (*) modello DALF/25-1 (Figura 2):

Figura 2 - Watermeter Gioanola da 1"

Figura 2 – Watermeter Gioanola da 1″

Nel primo test il Watermeter da 1″ e le relative connessioni sono state posizionate similmente a quanto visibile nell’immagine in questione (la Figura 1) cioè nel modo funzionalmente SCORRETTO adottato per quel test ed il set-up complessivo realizzato è appunto visibile in Figura 3:

Figura 3 - Watermeter da 1" posizionato SCORRETTAMENTE

Figura 3 – Watermeter da 1″ Set-up SCORRETTO

 

Si andrà quindi a determinare la quantità effettiva d’acqua transitante nell’unità di tempo per confronto con una misura di riferimento.

La verifica della correttezza dell’indicazione dello strumento,  installato così “maldestramente”, si effettua riempendo un contenitore di vetro di volume noto (nel nostro caso pari ad 1 Litro) con l’acqua prelevata dal serbatoio, e misurando il tempo necessario al riempimento del contenitore di riferimento da 1 Litro. Si confronta poi il valore rilevato con questo metodo con quanto indicato dello strumento.

Per documentare le principali fasi del test è stato realizzato un breve Filmato (n.1).

Riassumendo i dati salienti del nostro primo test, l’inizio dell’immissione dell’acqua all’interno del contenitore da 1 Litro parte circa al minuto 0:26 del filmato, mentre il riempimento si completa al minuto 1:13. In questo lasso di tempo la rotellina, che indica la quantità d’acqua transitante, ha completato 3 giri che corrispondono a 3 litri d’acqua stimati dallo strumento.

Analizzando i dati è possibile calcolare il tempo effettivo necessario per immettere 1 Litro d’acqua nel contenitore di vetro. Tale tempo risulta pari a 47 secondi, da cui il flusso d’acqua reale si stima corrisponda a circa 76.6 litri/ora.

Se invece considerassimo le indicazioni dirette del Watermeter, che indica 3 litri, considerando i 47 secondi si stimerebbe in modo errato un flusso d’acqua pari a circa 229.8 litri/ora quindi un errore pari al 200%.

Nel secondo test il set-up con il Watermeter da 1″ è stato modificato al fine di assicurare il CORRETTO funzionamento dello strumento, introducendo una curva verso l’alto “a valle” del Watermeter ed il set-up complessivo realizzato è appunto quello visibile in Figura 4:

Figura 4 - Watermeter da 1" posizionato CORRETTAMENTE

Figura 4 – Watermeter da 1″ Set-up CORRETTO

Per documentare le principali fasi del test è stato realizzato un breve Filmato (n.2).

Riassumendo i dati salienti del nostro secondo test, l’inizio dell’immissione dell’acqua all’interno del contenitore da 1 Litro parte circa al minuto 0:23 del filmato, mentre il riempimento si completa al minuto 1:11. In questo lasso di tempo la rotellina, che indica la quantità d’acqua transitante, ha completato 1.1 giri che corrispondono a 1.1 litri d’acqua stimati dallo strumento con un errore contenuto al 10% circa.

Analizzando i dati è possibile verificare il tempo effettivo necessario per immettere 1 Litro d’acqua nel contenitore di vetro. Tale tempo risulta pari a 48 secondi, da cui il flusso d’acqua reale corrisponde ancora a circa 75 litri/ora.

Per il terzo test si è utilizzato un Watermeter Gioanola da 3/4″ modello USLF/20 (Figura 5 e Figura 6):

Figura 5 - Watermeter Gioanola da 3/4"

Figura 5 – Watermeter Gioanola da 3/4″

Figura 6 - Watermeter Gioanola da 3/4"

Figura 6 – Watermeter Gioanola da 3/4″

Anche in questo caso inizialmente il Watermeter da 3/4″ e le relative connessioni sono state posizionate similmente a quanto visibile nell’immagine in questione (la Figura 1) cioè nel modo funzionalmente SCORRETTO adottato per quel test ed il set-up complessivo realizzato è appunto visibile in Figura 7:

Figura 7 – Watermeter da 3/4″ Set-up SCORRETTO

Figura 7 – Watermeter da 3/4″ Set-up SCORRETTO

Nuovamente la verifica della correttezza dell’indicazione dello strumento,  installato così “maldestramente”, si effettua riempendo un contenitore di vetro di volume noto (nel nostro caso pari ad 1 Litro) con l’acqua prelevata dal serbatoio, e misurando il tempo necessario al riempimento del contenitore di riferimento da 1 Litro. Si confronta poi il valore rilevato con questo metodo con quanto indicato dello strumento.

Per documentare le principali fasi del test è stato realizzato un breve Filmato (n.3).

Riassumendo i dati salienti del nostro terzo test, l’inizio dell’immissione dell’acqua all’interno del contenitore da 1 Litro parte circa al minuto 0:30 del filmato, mentre il riempimento si completa al minuto 1:26. In questo lasso di tempo la rotellina, che indica la quantità d’acqua transitante, ha completato 2.7 giri che corrispondono a 2.7 litri d’acqua stimati dallo strumento.

Analizzando i dati è possibile calcolare il tempo effettivo necessario per immettere 1 Litro d’acqua nel contenitore di vetro. Tale tempo risulta pari a 56 secondi, da cui il flusso d’acqua reale si stima corrisponda a circa 64.3 litri/ora.

Se invece considerassimo le indicazioni dirette del Watermeter, che indica 2.7 litri, considerando i 56 secondi si stimerebbe in modo errato un flusso d’acqua pari a circa 176.8 litri/ora quindi un errore pari al 175%.

Nel quarto test il set-up con il Watermeter da 3/4″ è stato modificato al fine di assicurare il CORRETTO funzionamento dello strumento, introducendo una curva verso l’alto “a valle” del Watermeter ed il set-up complessivo realizzato è appunto quello visibile in Figura 8:

Figura 8 – Watermeter da 3/4″ Set-up CORRETTO

Figura 8 – Watermeter da 3/4″ Set-up CORRETTO

Per documentare le principali fasi del test è stato realizzato un breve Filmato (n.4).

Riassumendo i dati salienti del nostro quarto test, l’inizio dell’immissione dell’acqua all’interno del contenitore da 1 Litro parte circa al minuto 0:31 del filmato, mentre il riempimento si completa al minuto 1:28. In questo lasso di tempo la rotellina, che indica la quantità d’acqua transitante, ha completato 1.0 giri che corrispondono a 1.0 litri d’acqua stimati dallo strumento, praticamente un errore nullo.

Analizzando i dati è possibile verificare il tempo effettivo necessario per immettere 1 Litro d’acqua nel contenitore di vetro. Tale tempo risulta pari a 57 secondi, da cui il flusso d’acqua reale corrisponde a circa 63.1 litri/ora.

Conclusioni

Quanto mostrato rende l’idea dell’enorme sovrastima, rispetto al reale flusso d’acqua, che uno scorretto utilizzo dello strumento può determinare.

Tale comportamento degli strumenti “a palette” è noto ai tecnici del settore ed appare realmente incomprensibile il motivo per il quale gli esecutori del test preso in esame abbiano installato lo strumento nelle condizioni operative in cui appunto il rischio di sovrastima risulta così elevato da rendere del tutto inattendibile la misurazione.

(*) Si noti che proprio allo scopo di evitare malfunzionamenti la Gioanola ha pubblicato una serie di istruzioni installative (a cui gli installatori devono attenersi) al fine di assicurare le condizioni necessarie per il corretto funzionamento dei propri prodotti.

Appendice 1 al Post [21/04/2016]

Hermano Tobia ha contestato il setup realizzato dal GSVIT in quanto a suo parere privo del pezzo di tubo, rivolto verso il basso, che dalla Figura 1 parrebbe immerso nel serbatoio. Tobia rivendica che questo “accorgimento” (del quale afferma che il GSVIT non si sarebbe accorto) garantendo una sorta di “circuito chiuso”, renderebbe la misura dello strumento immune da rischi di sovrastima perchè l’aria non potrebbe più entrare dallo scarico.

Sulla base di semplici considerazioni fisiche GSVIT invece ha ritenuto che questa parte di condotta a “tubo immerso” non determina effetto nell’impedire la sovrastima da parte dello strumento e per questo motivo il tubo immerso non è stato preso in considerazione dal GSVIT per la realizzazione dei precedenti set-up dimostrativi.

GSVIT invece aveva suggerito e mostrato l’efficacia del montaggio CORRETTO che prevede l’introduzione di una curva verso l’alto (per poi ritornare verso il basso), collocata “a valle” del Watermeter.

Ad ogni buon conto, con l’unico scopo di dare una evidenza più che altro a carattere didattico di quanto contestato, si è variato il set-up modificandolo come visibile in Figura 9, aggiungendo anche la parte terminale immersa in un contenitore pieno d’acqua.

Figura 9 - Setup con uscita immersa

Figura 9 – Setup con uscita immersa

Si è ripetuto il confronto tra il reale valore di acqua transitata in un determinato intervallo di tempo e quella “misurata” dallo strumento. Il valore reale, questa volta, è stato determinato con il metodo del peso della massa dell’acqua, utilizzando una bilancia.

Nel Filmato (n.5) è stato documentato lo svolgimento del test.

Riassumendo i dati salienti di questo ulteriore test, ricavabili dal filmato:

a) peso iniziale 550 grammi circa al minuto 0:29 del filmato

b) rilevazione iniziale 0 Litri al minuto 0:31 del filmato

c) peso finale 1650 grammi circa al minuto 1:31 del fimato

d) rilevazione finale 2.3 Litri al minuto 1:31 del filmato

da cui analizzando questi dati è possibile determinare:

c)a) = 1650 – 550 = 1100 grammi in 62 secondi

d)b) = 2.3 – 0 = 2.3 litri in 60 secondi

cioè il reale flusso d’acqua vale circa 64 l/h mentre quello misurato dallo strumento risulta in elevato sovraeccesso e pari a circa 138 l/h.

Si conferma pertanto quanto già noto dalla teoria e cioè che la parte di tubo immerso di per sè non da alcuna particolare garanzia che lo strumento lavori in condizioni tali da stimare correttamente la quantità d’acqua transitata.

Appendice 2 al Post [23/04/2016]

Hermano Tobia ha correttamente messo in dubbio che la sovrastima dello strumento possa esistere anche quando il flusso d’acqua in transito nella condotta sia molto maggiore di quelli mostrati sin’ora. Infatti se la portata è sufficientemente elevata l’acqua è in grado di espellere l’aria dallo strumento anche se esso è montato nel punto più alto della tubazione.
La portata ridotta è stata utilizzata dal GSVIT sulla base della considerazione che il documento nei calcoli del COP fa riferimento all’utilizzo di soli 18 generatori ognuno con una potenza termica supposta di circa 11kW e alimentati da due circuiti ognuno con la propria pompa e Flussimetro (vedi Figura 1 del documento).
In queste condizioni la portata di acqua letta su ogni Flussimetro (supposta uguale e costante) doveva essere di circa 170 l/h in linea con i valori utilizzati nei nostri test.
Ovviamente è possibile che le pompe non fossero state utilizzate a portata ridotta (la portata delle pompe centrifughe normalmente viene ridotta semplicemente mediante valvola di strozzaggio in uscita come effettivamente ha fatto GSVIT). In questo caso, dal momento che la portata nominale delle pompe era certamente molto superiore a quella necessaria per i moduli a prescindere dal loro numero utilizzato, occorre supporre che esse venissero accese ogni volta che il livello nel serbatoio di raccolta (water reservoir nel documento) raggiungeva un certo livello e spente prima che le pompe pescassero aria.

Hermano Tobia aveva fatto notare che la pompa utilizzata dal GSVIT (centrifuga a immersione) era diversa da quella indicata nel documento (autoadescante).
La scelta della pompa a immersione è stata una scelta voluta da parte del GSVIT perchè essa garantisce che non possa essere aspirata aria che altererebbe il funzionamento del Flussimetro.
Prendendo in considerazione queste osservazioni è stato allestito un nuovo test che prevedeva l’utilizzo di una pompa autoadescante e una portata misurata dal Flussimetro di circa 1400 litri/ora.
Se tutto fosse stato montato correttamente avremmo constatato che la misura indicata dal Flussimetro coincideva con la quantità di acqua effettivamente transitata. Abbiamo però voluto verificare come con questo set-up sia sufficiente un piccolo ingresso di aria per alterare completamente la misura del Flussimetro indipendentemente dalla sua posizione e dalla portata utilizzata.

Bisogna infatti considerare che le pompe autoadescanti contrariamente alle comuni centrifughe, hanno la capacità di adescarsi e funzionare anche se oltre all’acqua viene aspirata una quantità anche importante di aria.

Il set-up realizzato e il modello di pompa (Water Pump Conforto modello MPM 2 CRA di tipo autoadescante, di potenza 0.55 kW) sono visibili nelle Figure 10 e 11:

Figura 10 - Setup a flusso elevato con pompa autoadescante

Figura 10 – Setup a flusso elevato con pompa autoadescante

Figura 11- Water Pump Conforto

Figura 11- Water Pump Conforto

Nel test la sovrastima del Watermeter risiede nella miscela di acqua e aria che si forma nel tubo di aspirazione. L’ingresso anomalo di aria è stato ottenuto semplicemente omettendo il teflon di tenuta sulle giunzioni del tubo di aspirazione. Inutile dire che un errore anche molto maggiore si ottiene se si omette di arrestare la pompa una volta vuoto il “water reservoir” lasciando che la pompa aspiri acqua e aria.

Nel Filmato (n.6) è stato documentato lo svolgimento del test.

Anche questa volta il confronto avviene tra il reale valore di acqua transitata in un determinato intervallo di tempo e quella “misurata” dallo strumento nel medesimo intervallo. Il valore reale è stato determinato con il metodo del peso della massa dell’acqua, utilizzando una bilancia.

Riassumendo i dati salienti di questo ulteriore test, ricavabili dal filmato, si può verificare che a fronte di 5 Litri indicati dallo strumento in realtà l’acqua effettivamente transitata risulta poco più di 3.1 Litri.

Annunci
Questa voce è stata pubblicata in E-Cat. Contrassegna il permalink.

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...